Connect with us

CivicSciTimes - Stories in Science

Debts and Lessons (in Science)

Colm P. Kelleher is a postdoc at Harvard University specializing in biophysics and soft matter physics. As well as research, Colm is interested in science communication and education. In this article, he writes about about the importance of mentors and role models in his scientific life.

CSM Lab

Published

on

ย Colmย P. Kelleher

[su_boxbox title=”About”] Colm P. Kelleher is a postdoc at Harvard University specializing in biophysics and soft matter physics.ย As well as research, Colm is interested in science communication and education. He has published several Ted-Ed videos on physics and math, as well as a coloring book,ย Phases of Matter, based on his PhD research. Colm earned his BSc in Mathematics and Physics at the National University of Ireland, Cork in 2008, and completed his PhD in Physics at New York University in 2017.[/su_boxbox]

[dropcap]M[/dropcap]arcus Aurelius’ Meditations is one of the classic texts of ancient literature. In this short work, the part-time philosopher (his day job was Emperor of Rome) explains, via stern injunctions, grandfatherly advice, and pithy aphorisms, how to live a good life. Marcus was part of the Graeco-Roman “Stoic” tradition — a school of philosophy that emphasized practical wisdom over theory, the idea that negative emotions lie at the root of suffering, and the cultivation of self-control to minimize the harm of those emotions.

Colm P. Kelleher

To help themselves and their students in their quest to live well, many Stoics identified and studied role models — people they wish to emulate in one way or another. The first chapter of Meditations, called “Debts and Lessons,” is written in this spirit — the entire chapter consists of a list of Marcusโ€™ role models and mentors, and a brief description of how he has benefited from the example, or the generosity, of each.ย 

Although Meditations was written almost 2,000 years ago, the relationships Marcus describes in this chapter — to his father, mother, teachers, colleagues, and friends — feel very familiar, and most of his advice remains sound today. From Diognetus: โ€œTo hear unwelcome truths.โ€ From The Literary Critic Alexander: โ€œTo not constantly be correcting people.โ€ From Sextus: โ€œKindness.โ€ Even when the specifics of the text remind us that the writer lived in a very different world (Diognetus again: โ€œNot to be obsessed with quail fighting or other crazes like thatโ€), the broader point remains valid — mentally replace โ€œquail fightingโ€ with โ€œInstagramโ€ and you have an instant update.

Re-reading “Debts and Lessons” recently, I thought about the importance of mentors and role models in my scientific life. Who have I been most influenced by, and how? What behaviors and attitudes have I identified in others that I try to recreate in myself? Who has given me an opportunity, or taken a chance on me, when others might not have?

So I decided to make my own list. Here it is.

  1. My father

For teaching me the value of facts — of seeking to see things as they are. For making me argue my point. For passing on his love of books. For believing in the nobility of service.

  1. P—

For his commitment to finding the truth — even if it’s not what we want it to be. (Or worse — if the truth is “we can’t measure this properly, so thereโ€™s nothing we can say about it.”) For taking ideas seriously regardless of who they come from. For his sense of duty to his students after they graduate. For explaining that the most impressive experiment isn’t the hardest one, but rather the simplest one that yields the most insight.

  1. D—
Explore Next:  Finding Myself Between Cacti in Mexico

For combining great focus and scientific ambition with gentleness, care, and respect for his subordinates. For thinking and caring about writing well. For being conscious of his role in the lives of others, especially his students. For not being vain or egotistic, and allowing himself play second fiddle when thatโ€™s the most productive thing to do.

  1. R—

For his precision and rigor. For his total aversion to bullshit (especially mine). For the breadth and depth of his knowledge of both theory and experimental technique. For giving negative feedback when it wasn’t welcome, but was needed. For demonstrating forgiveness after arguments that got too personal.

  1. A—

For being a good scientist, while not taking things (or herself, or me) too seriously. For being a good friend as well.

  1. M—

For her never-ending curiosity exploding outward in all directions. For being a perpetual (and perpetually joyful) student. For treating children and young people with intellectual seriousness, and as a consequence being the best teacher I know. For demonstrating how to teach not just with style, but with compassion and even love.

  1. C—

For her self-belief, for taking charge, and for pushing — herself and everyone around her. For trying to do good in the world sincerely, effectively, and honorably. For (somehow, miraculously) always responding to emails right away.

  1. M—

For his energy, creativity, and wit. For insubordination and his willingness to be disrespectful, but only to those in positions of power or authority, and only when itโ€™s deserved.

  1. S— & X—

For their boundless intellectual energy. For being personally open and professionally generous.

  1. W—

For his generosity with his time, and teaching me molecular biology even though he was busy and there was nothing in it for him.

  1. C—

For her tirelessness and good spirits in the face of professional adversity. For her commitment to enjoying the journey, and to doing a good job for its own sake. For giving me the single best piece of advice I received in grad school: โ€œAlways use your middle initial in publications.โ€

  1. The teachers I have had throughout my life

For sacrificing other opportunities — in many cases, the opportunity to make a lot more money — so I could learn from them. For their understated humor and intellectual honesty. For explaining to me, in good faith and as best they could, how the world works.

  1. The students I have had throughout my life

For treating me with respect — but not too much. For listening attentively and trying to understand what I was trying to say, for asking questions and being engaged. For being patient when I was confusing or underprepared, and for helping each other to learn. For never (or rarely) letting me get away with mental sloppiness.

Cover Image byย StevoLeBlanc from Pixabay |ย Pixabay License

 

Metrics

Sessions

[analytify-stats metrics=”ga:sessions” analytics_for=”current” custom_page_id = “”permission_view=””]

Total number of Sessions. A session is the period time a user is actively engaged with the page.

Visitors

[analytify-stats metrics=”ga:visitors” analytics_for=”current” custom_page_id = “”permission_view=””]

Users that have had at least one session within the selected date range. Includes both new and returning users.

Page views

[analytify-stats metrics=”ga:pageviews” analytics_for=”current” custom_page_id = “”permission_view=””]

Pageviews is the total number of time the article was viewed. Repeated views are counted.

CivicSciTimes - Stories in Science

Unexpected Stories and Spindle Mistakes: Discovering that Wild-type Cells are Full of Surprises

CSM Lab

Published

on

By

Natalie Nannas

Natalie Nannas is an Associate Professor of Biology at Hamilton College in Clinton, NY. She teaches courses in genetics, molecular biology, and bioethics. Dr. Nannas graduated from Grinnell College with bachelor’s degrees in biological chemistry and French. She received her Masterโ€™s and PhD from Harvard University in molecular biology and genetics. Dr. Nannas conducted her postdoctoral research at the University of Georgia where she won a National Science Foundation Plant Genome Postdoctoral Fellowship. At Hamilton College, Dr. Nannas enjoys teaching and sharing her passion for microscopy with her undergraduate research students. When not glued to a microscope, she loves spending time with her husband and two daughters. The narrative below by Natalie Nannas captures the human stories behind the science from a 2022 paper titled โ€œFrequent spindle errors require structural rearrangement to complete meiosis in Zea maysโ€ which was published by her group in 2022 in the International Journal of Molecular Sciences.

Science never works out the way we plan. As scientists, we ask questions, hypothesize and outline our goals โ€ฆ then reality of science occurs. The reality of science is often full of failed controls, endless troubleshooting, and sometimes strange findings that lead us in new and unpredictable directions. Our publications give the impression that we planned these scientific journeys from the beginning and do not tell the human side of the process with all of its twists and turns, dead-ends and U-turns. I want to tell you the real story behind my first publication as a faculty member with my own lab. It did not go as planned due to the COVID-19 pandemic. My lab was shut down in the middle of our investigation, and my students and I were unable to generate new data. In the beginning, it seemed like we were stranded with only control data and no story to tell, but the time away from the lab allowed us to spend more time looking carefully at wild-type cells. What seemed like a dead-end suddenly became its own story when we found something unexpected hiding within microscopy movies. Our wild-type cells were making mistakes, attempting fixes and changing directions, just like we do as scientists.

My scientific journey began with flickering green lights and a microscope (you can read more about it here). As an undergraduate, I was mesmerized by the beauty of watching living cells shuffle fluorescently labeled proteins throughout their cytoplasm. I followed this passion for microscopy into my doctoral dissertation research at Harvard University where I investigated how yeast cells build the machinery needed to pull their chromosomes apart. This machinery is a dynamic collection of long protein tubes called microtubules and other organizing proteins that help move and shuffle microtubules. I loved watching the delicate dance of chromosomes interacting with microtubules of the spindle, and I wanted to continue studying this process in my postdoctoral studies.

During postdoctoral studies at the University of Georgia, I won a fellowship from the National Science Foundation to develop a new technique in microscopy. No one had ever watched plants building their spindles in meiosis, the specialized cell division that produces egg and sperm. Other scientists had performed beautiful microscopy studies observing how mitotic spindles function inside of plant cells, but due to the technical challenges, no one had ever observed live plant cells building spindles in meiosis. I was thrilled to take on this challenge by using version of maize that had fluorescently labeled tubulin, the protein that makes up microtubules of the spindle. With this line of maize, spindles would glow fluorescent green, allowing me to image if only I could extract the meiotic cells.

Dr. Natalie Nannas

We were so busy collecting data and prepping for our mutant studies that we never really took time to analyze the wild-type cells.

After almost a year spent dissecting maize plants, I finally managed to develop a method to isolate these tiny cells and keep them alive in a growth media long enough to image them. This new method of live imaging was going to serve as the foundation of my new lab at Hamilton College, a primarily undergraduate institution. With my students, I planned to investigate the pathways governed spindle assembly. Most animal mitotic cells have a structure called a centrosome that dictates how spindles are formed; however, female animal meiotic cells lack these structures and must use other pathways to direct spindle assembly. Plants also lack centrosomes, and I wanted to inhibit these known animal pathways in our plant live imaging system.

Explore Next:  The Anxiety Fights Back

As I set up my lab, my students and I collected live movies of wild-type maize cells building their spindles. I told my students and myself that these movies were not the main event, they were just the control cells so we would have a baseline comparison for our experimental conditions. We were so busy collecting data and prepping for our mutant studies that we never really took the time to analyze the wild-type cells. At the surface level, they built spindles and segregated chromosomes in a generally expected amount of time, so we focused on preparing for our upcoming experimentsโ€ฆ. then March 2020 occurred.

The pandemic forced us to slow down and look more carefully at our wild-type data, and I am grateful for the detour.

My students headed home for spring break with a warning that there may be a delay in coming back to campus due to the spread of COVID-19. None of us were prepared for the shutdown that followed. Like many colleges and universities, our campus was closed for the remainder of the spring 2020 semester and the summer of 2020. My students and I began meeting on Zoom, trying to make a new plan for our research. The only data we had to work with were the microscopy of wild-type maize cells, so we decided to spend time digging more deeply into these movies. Originally, we had only measured the total time it took to build a spindle as it would be a baseline for comparison to our mutants. We had not looked carefully at any of the intermediate time points in the assembly process. When my students looked more closely at our movies, they discovered that wild-type cells built an incorrectly shaped spindle over 60% of the time!

We found that maize meiotic cells often built spindles with three poles instead of two, and they had to actively rearrange their spindle structure to correct this mistake. We also found that in these cells, there was a delay in meiosis as cells refused to progress until this correction had been made. This is an exciting discovery as it showed that plants are error-prone in their spindle assembly, much like human female meiotic cells. Our findings also suggested that meiotic cells were monitoring their spindle shape when determining if they should move forward in meiosis. Previous work has shown that cells monitor the attachment of chromosomes to the spindle to make this decision, but our work adds a new dimension, showing that they also monitor spindle shape. As we continued to analyze our videos, we also learned that cells corrected their spindle morphology in a predictable way. They always collapsed the two poles that were closest together, creating a single pole and resulting in a correct bipolar spindle.

The image shows the first page of the paper which can be accessed here.

My students and I had begun our scientific journey planning to breeze over wild-type cells, moving on to what we envisioned would be a more exciting story of spindle mutants. The pandemic forced us to slow down and look more carefully at our wild-type data, and I am grateful for the detour. I rediscovered my love of closely watching flickering green fluorescent lights, the dance of microtubules sliding into place or making missteps and shuffling into new arrangements. Watching life attempt a complicated process, make mistakes, and try again, is a lesson that never grows old. It reminds me that our scientific journeys are just the same, they start in one direction but are fluid and constantly changing, and hopefully, they end with a functional spindle!

Read the Published Paper

Weiss, J.D., McVey, S.L., Stinebaugh, S.E., Sullivan, C.F., Dawe, R.K., and N.J. Nannas. 2022. Frequent spindle errors require structural rearrangement to complete meiosis in Zea maysInternational Journal of Molecular Sciences, 23 (8):4293โ€“4312.

โ€”

ABOUT: Stories in Science is a special series on the Civic Science Times. The main aim is to document the first-hand accounts of the human stories behind the science being published by scientists around the world. Such stories are an important element behind the civic nature of science.

SUBMISSION: Click here to access the story guidelines and submission portal. Please note that not all stories are accepted for publication. After submission, we will let you know whether we have selected the story for the review process.

Continue Reading

Upcoming Events

Trending